Wnt/β-catenin signalling underpins juvenile Fasciola hepatica growth and development

Wnt/β-catenin 信号传导支持幼年肝片吸虫的生长和发育

阅读:7
作者:Rebecca Armstrong, Nikki J Marks, Timothy G Geary, John Harrington, Paul M Selzer, Aaron G Maule

Abstract

Infection by the liver fluke, Fasciola hepatica, places a substantial burden on the global agri-food industry and poses a significant threat to human health in endemic regions. Widespread resistance to a limited arsenal of chemotherapeutics, including the frontline flukicide triclabendazole (TCBZ), renders F. hepatica control unsustainable and accentuates the need for novel therapeutic target discovery. A key facet of F. hepatica biology is a population of specialised stem cells which drive growth and development - their dysregulation is hypothesised to represent an appealing avenue for control. The exploitation of this system as a therapeutic target is impeded by a lack of understanding of the molecular mechanisms underpinning F. hepatica growth and development. Wnt signalling pathways govern a myriad of stem cell processes during embryogenesis and drive tumorigenesis in adult tissues in animals. Here, we identify five putative Wnt ligands and five Frizzled receptors in liver fluke transcriptomic datasets and find that Wnt/β-catenin signalling is most active in juveniles, the most pathogenic life stage. FISH-mediated transcript localisation revealed partitioning of the five Wnt ligands, with each displaying a distinct expression pattern, consistent with each Wnt regulating the development of different cell/tissue types. The silencing of each individual Wnt or Frizzled gene yielded significant reductions in juvenile worm growth and, in select cases, blunted the proliferation of neoblast-like cells. Notably, silencing FhCTNNB1, the key effector of the Wnt/β-catenin signal cascade led to aberrant development of the neuromuscular system which ultimately proved lethal - the first report of a lethal RNAi-induced phenotype in F. hepatica. The absence of any discernible phenotypes following the silencing of the inhibitory Wnt/β-catenin destruction complex components is consistent with low destruction complex activity in rapidly developing juvenile worms, corroborates transcriptomic expression profiles and underscores the importance of Wnt signalling as a key molecular driver of growth and development in early-stage juvenile fluke. The putative pharmacological inhibition of Wnt/β-catenin signalling using commercially available inhibitors phenocopied RNAi results and provides impetus for drug repurposing. Taken together, these data functionally and chemically validate the targeting of Wnt signalling as a novel strategy to undermine the pathogenicity of juvenile F. hepatica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。