Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants

SARS-CoV-2 变体的鼻腔和嗅觉感染特征的演变

阅读:6
作者:Mengfei Chen, Andrew Pekosz, Jason S Villano, Wenjuan Shen, Ruifeng Zhou, Heather Kulaga, Zhexuan Li, Amy Smith, Asiana Gurung, Sarah E Beck, Kenneth W Witwer, Joseph L Mankowski, Murugappan Ramanathan Jr, Nicholas R Rowan, Andrew P Lane

Abstract

SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in nasal tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variant revealed that SARS-CoV-2 WA1 or Delta infect a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possessed broader cellular invasion capacity into the submucosa, while Omicron displayed enhanced nasal respiratory infection and longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon were more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa were accompanied by a decline of phagocytosis-related genes. Further, robust basal stem cell activation contributed to neuroepithelial regeneration and restored ACE2 expression postinfection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration after infection. The shifting characteristics of viral infection at the airway portal provide insight into the variability of COVID-19 clinical features, particularly long COVID, and may suggest differing strategies for early local intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。