The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity

ICOS-B7h T细胞共刺激通路在移植免疫中的作用

阅读:1
作者:Hiroshi Harada, Alan D Salama, Masayuki Sho, Atsushi Izawa, Sigrid E Sandner, Toshiro Ito, Hisaya Akiba, Hideo Yagita, Arlene H Sharpe, Gordon J Freeman, Mohamed H Sayegh

Abstract

Inducible costimulatory molecule (ICOS) plays a pivotal role in T cell activation and Th1/Th2 differentiation. ICOS blockade has disparate effects on immune responses depending on the timing of blockade. Its role in transplantation immunity, however, remains incompletely defined. We used a vascularized mouse cardiac allograft model to explore the role of ICOS signaling at different time points after transplantation, targeting immune initiation (early blockade) or the immune effector phase (delayed blockade). In major histocompatibility-mismatched recipients, ICOS blockade prolonged allograft survival using both protocols but did so more effectively in the delayed-treatment group. By contrast, in minor histocompatibility-mismatched recipients, early blockade accelerated rejection and delayed blockade prolonged graft survival. Alloreactive CD4+ T cell expansion and alloantibody production were suppressed in both treatment groups, whereas only delayed blockade resulted in suppression of effector CD8+ T cell generation. After delayed ICOS blockade, there was a diminished frequency of allospecific IL-10-producing cells and an increased frequency of both IFN-gamma- and IL-4-producing cells. The beneficial effects of ICOS blockade in regulating allograft rejection were seen in the absence of CD28 costimulation but required CD8+ cells, cytotoxic T lymphocyte antigen-4, and an intact signal transducer and activator of transcription-6 pathway. These data define the complex functions of the ICOS-B7h pathway in regulating alloimmune responses in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。