Distinct domains of the sodium channel beta3-subunit modulate channel-gating kinetics and subcellular location

钠通道β3亚基的不同结构域调节通道门控动力学和亚细胞定位

阅读:7
作者:Esther J Yu, Seong-Hoon Ko, Paul W Lenkowski, Alena Pance, Manoj K Patel, Antony P Jackson

Abstract

Electrical excitability in neurons depends on the expression and activity of voltage-gated sodium channels in the neuronal plasma membrane. The ion-conducting alpha-subunit of the channel is associated with auxiliary beta-subunits of which there are four known types. In the present study, we describe the first detailed structure/function analysis of the beta3-subunit. We correlate the effect of point mutations and deletions in beta3 with the functional properties of the sodium channel and its membrane-targeting behaviour. We show that the extracellular domain influences sodium channel gating properties, but is not required for the delivery of beta3 to the plasma membrane when expressed with the alpha-subunit. In contrast, the intracellular domain is essential for correct subunit targeting. Our results reveal the crucial importance of the Cys21-Cys96 disulphide bond in maintaining the functionally correct beta3 structure and establish a role for a second putative disulphide bond (Cys2-Cys24) in modulating channel inactivation kinetics. Surprisingly, our results imply that the wild-type beta3 molecule can traverse the secretory pathway independently of the alpha-subunit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。