Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria

铜绿假单胞菌中的鼠李糖脂可分散硫酸盐还原菌的生物膜

阅读:4
作者:Thammajun L Wood, Ting Gong, Lei Zhu, James Miller, Daniel S Miller, Bei Yin, Thomas K Wood

Abstract

Biofilm formation is an important problem for many industries. Desulfovibrio vulgaris is the representative sulfate-reducing bacterium (SRB) which causes metal corrosion in oil wells and drilling equipment, and the corrosion is related to its biofilm formation. Biofilms are extremely difficult to remove since the cells are cemented in a polymer matrix. In an effort to eliminate SRB biofilms, we examined the ability of supernatants from Pseudomonas aeruginosa PA14 to disperse SRB biofilms. We found that the P. aeruginosa supernatants dispersed more than 98% of the biofilm. To determine the biochemical basis of this SRB biofilm dispersal, we examined a series of P. aeruginosa mutants and found that mutants rhlA, rhlB, rhlI, and rhlR, defective in rhamnolipids production, had significantly reduced levels of SRB biofilm dispersal. Corroborating these results, purified rhamnolipids dispersed SRB biofilms, and rhamnolipids were detected in the P. aeruginosa supernatants. Hence, P. aeruginosa supernatants disperse SRB biofilms via rhamnolipids. To determine the genetic basis of how the P. aeruginosa supernatants disperse SRB biofilms, a whole transcriptomic analysis was conducted (RNA-seq); based on this analysis, we identified four proteins (DVUA0018, DVUA0034, DVUA0066, and DVUA0084) of the D. vulgaris megaplasmid that influence biofilm formation, with production of DVUA0066 (a putative phospholipase) reducing biofilm formation 5.6-fold. In addition, the supernatants of P. aeruginosa dispersed the SRB biofilms more readily than protease in M9 glucose minimum medium and were also effective against biofilms of Escherichia coli and Staphylococcus aureus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。