Genomic insights into indole-3-acetic acid catabolism in the marine algae-associated bacterium, Marinomonas sp. NFXS50

对海洋藻类相关细菌 Marinomonas sp. NFXS50 中吲哚-3-乙酸分解代谢的基因组洞察

阅读:6
作者:Constança Bertrand, Rodrigo Martins, Francisco Nunes, Pedro Brandão, Francisco X Nascimento

Abstract

Auxins, mainly in the form of indole-3-acetic acid (IAA), regulate several aspects of plant and algal growth and development. Consequently, plant and algae-associated bacteria developed the ability to modulate IAA levels, including IAA catabolism. In this work, we present and analyse the genome sequence of the IAA-degrading and marine algae-associated bacterium, Marinomonas sp. NFXS50, analyse its IAA catabolism gene cluster and study the prevalence of IAA catabolism genes in other Marinomonas genomes. Our findings revealed the presence of homologs of the Pseudomonas iac gene cluster, implicated in IAA catabolism, in the genome of strain NFXS50; however, differences were observed in the content and organization of the Marinomonas iac gene cluster when compared to that of the model iac-containing Pseudomonas putida 1290. These variations suggest potential adaptations in the IAA catabolism pathway, possibly influenced by substrate availability and evolutionary factors. The prevalence of iac genes across several Marinomonas species underscores the significance of IAA catabolism in marine environments, potentially influencing plant/algae-bacteria interactions. This study provides novel insights into the IAA catabolism in Marinomonas, laying the groundwork for future investigations into the role of iac genes in Marinomonas physiology and the regulation of marine plant/algae-bacteria interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。