Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β

心脏再同步化通过重新激活 GSK-3β 使肌节对钙敏感

阅读:9
作者:Jonathan A Kirk, Ronald J Holewinski, Viola Kooij, Giulio Agnetti, Richard S Tunin, Namthip Witayavanitkul, Pieter P de Tombe, Wei Dong Gao, Jennifer Van Eyk, David A Kass

Abstract

Cardiac resynchronization therapy (CRT), the application of biventricular stimulation to correct discoordinate contraction, is the only heart failure treatment that enhances acute and chronic systolic function, increases cardiac work, and reduces mortality. Resting myocyte function also increases after CRT despite only modest improvement in calcium transients, suggesting that CRT may enhance myofilament calcium responsiveness. To test this hypothesis, we examined adult dogs subjected to tachypacing-induced heart failure for 6 weeks, concurrent with ventricular dyssynchrony (HF(dys)) or CRT. Myofilament force-calcium relationships were measured in skinned trabeculae and/or myocytes. Compared with control, maximal calcium-activated force and calcium sensitivity declined globally in HF(dys); however, CRT restored both. Phosphatase PP1 induced calcium desensitization in control and CRT-treated cells, while HF(dys) cells were unaffected, implying that CRT enhances myofilament phosphorylation. Proteomics revealed phosphorylation sites on Z-disk and M-band proteins, which were predicted to be targets of glycogen synthase kinase-3β (GSK-3β). We found that GSK-3β was deactivated in HF(dys) and reactivated by CRT. Mass spectrometry of myofilament proteins from HF(dys) animals incubated with GSK-3β confirmed GSK-3β–dependent phosphorylation at many of the same sites observed with CRT. GSK-3β restored calcium sensitivity in HF(dys), but did not affect control or CRT cells. These data indicate that CRT improves calcium responsiveness of myofilaments following HF(dys) through GSK-3β reactivation, identifying a therapeutic approach to enhancing contractile function

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。