Daidzein-Stimulated Increase in the Ciliary Beating Amplitude via an [Cl-]i Decrease in Ciliated Human Nasal Epithelial Cells

大豆黄酮刺激纤毛人鼻上皮细胞中 [Cl-]i 减少,从而增加纤毛摆动幅度

阅读:7
作者:Taka-Aki Inui, Makoto Yasuda, Shigeru Hirano, Yukiko Ikeuchi, Haruka Kogiso, Toshio Inui, Yoshinori Marunaka, Takashi Nakahari2

Abstract

The effects of the isoflavone daidzein on the ciliary beat distance (CBD, which is a parameter assessing the amplitude of ciliary beating) and the ciliary beat frequency (CBF) were examined in ciliated human nasal epithelial cells (cHNECs) in primary culture. Daidzein decreased [Cl-]i and enhanced CBD in cHNECs. The CBD increase that was stimulated by daidzein was mimicked by Cl--free NO&sub3;- solution and bumetanide (an inhibitor of Na⁺/K⁺/2Cl- cotransport), both of which decreased [Cl-]i. Moreover, the CBD increase was inhibited by 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker), which increased [Cl-]i. CBF was also decreased by NPPB. The rate of [Cl-]i decrease evoked by Cl--free NO&sub3;- solution was enhanced by daidzein. These results suggest that daidzein activates Cl- channels in cHNECs. Moreover, daidzein enhanced the microbead transport driven by beating cilia in the cell sheet of cHNECs, suggesting that an increase in CBD enhances ciliary transport. An [Cl-]i decrease enhanced CBD, but not CBF, in cHNECs at 37 °C, although it enhanced both at 25 °C. Intracellular Cl- affects both CBD and CBF in a temperature-dependent manner. In conclusion, daidzein, which activates Cl- channels to decrease [Cl-]i, stimulated CBD increase in cHNECs at 37 °C. CBD is a crucial factor that can increase ciliary transport in the airways under physiological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。