Coexpression of ABCB1 and ABCG2 in a Cell Line Model Reveals Both Independent and Additive Transporter Function

ABCB1 和 ABCG2 在细胞系模型中的共表达揭示了独立和附加的转运蛋白功能

阅读:7
作者:Andrea N Robinson, Bethelihem G Tebase, Sonia C Francone, Lyn M Huff, Hanna Kozlowski, Dominique Cossari, Jung-Min Lee, Dominic Esposito, Robert W Robey, Michael M Gottesman

Abstract

Although overexpression of multiple ATP-binding cassette transporters has been reported in clinical samples, few studies have examined how coexpression of multiple transporters affected resistance to chemotherapeutic drugs. We therefore examined how coexpression of ABCB1 (P-glycoprotein) and ABCG2 contributes to drug resistance in a cell line model. HEK293 cells were transfected with vector-encoding full-length ABCB1, ABCG2, or a bicistronic vector containing both genes, each under the control of a separate promoter. Cells transfected with both transporters (B1/G2 cells) demonstrated high levels of both transporters, and uptake of both the ABCB1-specific substrate rhodamine 123 and the ABCG2-specific substrate pheophorbide a was reduced when examined by flow cytometry. B1/G2 cells were also cross-resistant to the ABCB1 substrate doxorubicin, the ABCG2 substrate topotecan, as well as mitoxantrone and the cell cycle checkpoint kinase 1 inhibitor prexasertib, both of which were found to be substrates of both ABCB1 and ABCG2. When B1/G2 cells were incubated with both rhodamine 123 and pheophorbide a, transport of both compounds was observed, suggesting that ABCB1 and ABCG2, when coexpressed, can function independently to transport substrates. ABCB1 and ABCG2 also functioned additively to transport the common fluorescent substrates mitoxantrone and BODIPY-prazosin, as it was necessary to inhibit both transporters to prevent efflux from B1/G2 cells. ABCG2 expression was also found to decrease the efficacy of the ABCB1 inhibitor tariquidar in B1/G2 cells. Thus, ABCB1 and ABCG2 can independently and additively confer resistance to substrates, underscoring the need to inhibit multiple transporters when they are coexpressed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。