Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability

具有高柔韧性和生物降解性的蛋白质反应性热响应共聚物

阅读:18
作者:Jianjun Guan, Yi Hong, Zuwei Ma, William R Wagner

Abstract

A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide-hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 degrees C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited lower critical solution temperatures (LCSTs) from 18 to 26 degrees C. After complete hydrolysis, hydrogels were soluble in phosphate buffered saline at 37 degrees C with LCSTs above 40.8 degrees C. Incorporation of type I collagen at varying mass fractions by covalent reaction with the copolymer backbone slightly increased LCSTs. Water content was 32-80% without collagen and increased to 230% with collagen at 37 degrees C. Hydrogels were highly flexible and relatively strong at 37 degrees C, with tensile strengths from 0.3 to 1.1 MPa and elongations at break from 344 to 1841% depending on NIPAAm/HEMAPLA ratio, AAc content, and polylactide length. Increasing the collagen content decreased both elongation at break and tensile strength. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Degradation products were shown to be noncytotoxic. Cell adhesion on the hydrogels was 30% of that for tissue culture polystyrene but increased to statistically approximate this control surface after collagen incorporation. These newly described thermoresponsive copolymers demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。