Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity

EpOME/DiHOME 解决昆虫免疫问题及其类似物失调导致病原体超敏反应

阅读:7
作者:Tafim Hossain Hrithrik, Dong-Hee Lee, Nalin Singh, Anders Vik, Bruce D Hammock, Yonggyun Kim

Abstract

Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid: LA). They are metabolized into dihydroxyoctadecamonoenoic acids (DiHOMEs) in mammals. Unlike in mammals where they act as adipokines or lipokines, EpOMEs act as immunosuppressants in insects. However, the functional link between EpOMEs and pro-immune mediators such as PGE2 is not known. In addition, the physiological significance of DiHOMEs is not clear in insects. This study analyzed the physiological role of these C18 oxylipins using a lepidopteran insect pest, Spodoptera exigua. Immune challenge of S. exigua rapidly upregulated the expression of the phospholipase A2 gene to trigger C20 oxylipin biosynthesis, followed by the upregulation of genes encoding EpOME synthase (SE51385) and a soluble epoxide hydrolase (Se-sEH). The sequential gene expression resulted in the upregulations of the corresponding gene products such as PGE2, EpOMEs, and DiHOMEs. Interestingly, only PGE2 injection without the immune challenge significantly upregulated the gene expression of SE51825 and Se-sEH. The elevated levels of EpOMEs acted as immunosuppressants by inhibiting cellular and humoral immune responses induced by the bacterial challenge, in which 12,13-EpOME was more potent than 9,10-EpOME. However, DiHOMEs did not inhibit the cellular immune responses but upregulated the expression of antimicrobial peptides selectively suppressed by EpOMEs. The negative regulation of insect immunity by EpOMEs and their inactive DiHOMEs were further validated by synthetic analogs of the linoleate epoxide and corresponding diol. Furthermore, inhibitors specific to Se-sEH used to prevent EpOME degradation significantly suppressed the immune responses. The data suggest a physiological role of C18 oxylipins in resolving insect immune response. Any immune dysregulation induced by EpOME analogs or sEH inhibitors significantly enhanced insect susceptibility to the entomopathogen, Bacillus thuringiensis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。