Molecular basis for the reduced catalytic activity of the naturally occurring T560M mutant of human 12/15-lipoxygenase that has been implicated in coronary artery disease

人类 12/15-脂氧合酶天然存在的 T560M 突变体催化活性降低与冠状动脉疾病有关的分子基础

阅读:7
作者:Kathrin Schurmann, Monika Anton, Igor Ivanov, Constanze Richter, Hartmut Kuhn, Matthias Walther

Abstract

Lipoxygenases have been implicated in cardiovascular disease. A rare single-nucleotide polymorphism causing T560M exchange has recently been described, and this mutation leads to a near null variant of the enzyme encoded for by the ALOX15 gene. When we inspected the three-dimensional structure of the rabbit ortholog, we localized Thr-560 outside the active site and identified a hydrogen bridge between its side chain and Gln-294. This interaction is part of a complex hydrogen bond network that appears to be conserved in other mammalian lipoxygenases. Gln-294 and Asn-287 are key amino acids in this network, and we hypothesized that disturbance of this hydrogen bond system causes the low activity of the T560M mutant. To test this hypothesis, we first mutated Thr-560 to amino acids not capable of forming side chain hydrogen bridges (T560M and T560A) and obtained enzyme variants with strongly reduced catalytic activity. In contrast, enzymatic activity was retained after T560S exchange. Enzyme variants with strongly reduced activity were also obtained when we mutated Gln-294 (binding partner of Thr-560) and Asn-287 (binding partner of Gln-294 and Met-418) to Leu. Basic kinetic characterization of the T560M mutant indicated that the enzyme lacks a kinetic lag phase but is rapidly inactivated. These data suggest that the low catalytic efficiency of the naturally occurring T560M mutant is caused by alterations of a hydrogen bond network interconnecting this residue with active site constituents. Disturbance of this bonding network increases the susceptibility of the enzyme for suicidal inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。