Impaired cardiac contractility in mice lacking both the AE3 Cl-/HCO3- exchanger and the NKCC1 Na+-K+-2Cl- cotransporter: effects on Ca2+ handling and protein phosphatases

缺乏 AE3 Cl-/HCO3- 交换器和 NKCC1 Na+-K+-2Cl- 共转运体的小鼠心脏收缩力受损:对 Ca2+ 处理和蛋白磷酸酶的影响

阅读:7
作者:Vikram Prasad, Ilona Bodi, Jamie W Meyer, Yigang Wang, Muhammad Ashraf, Sandra J Engle, Thomas Doetschman, Karena Sisco, Michelle L Nieman, Marian L Miller, John N Lorenz, Gary E Shull

Abstract

To analyze the cardiac functions of AE3, we disrupted its gene (Slc4a3) in mice. Cl(-)/HCO3(-) exchange coupled with Na+-dependent acid extrusion can mediate pH-neutral Na+ uptake, potentially affecting Ca2+ handling via effects on Na+/Ca2+ exchange. AE3 null mice appeared normal, however, and AE3 ablation had no effect on ischemia-reperfusion injury in isolated hearts or cardiac performance in vivo. The NKCC1 Na+-K+-2Cl(-) cotransporter also mediates Na+ uptake, and loss of NKCC1 alone does not impair contractility. To further stress the AE3-deficient myocardium, we combined the AE3 and NKCC1 knock-outs. Double knock-outs had impaired contraction and relaxation both in vivo and in isolated ventricular myocytes. Ca2+ transients revealed an apparent increase in Ca2+ clearance in double null cells. This was unlikely to result from increased Ca2+ sequestration, since the ratio of phosphorylated phospholamban to total phospholamban was sharply reduced in all three mutant hearts. Instead, Na+/Ca2+ exchanger activity was found to be enhanced in double null cells. Systolic Ca2+ was unaltered, however, suggesting more direct effects on the contractile apparatus of double null myocytes. Expression of the catalytic subunit of protein phosphatase 1 was increased in all mutant hearts. There was also a dramatic reversal, between single null and double null hearts, in the carboxymethylation and localization to the myofibrillar fraction, of the catalytic subunit of protein phosphatase 2A, which corresponded to the loss of normal contractility in double null hearts. These data show that AE3 and NKCC1 affect Ca2+ handling, PLN regulation, and expression and localization of major cardiac phosphatases and that their combined loss impairs cardiac function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。