Mutant Samd9l expression impairs hematopoiesis and induces bone marrow failure in mice

突变的 Samd9l 表达会损害小鼠的造血功能并诱导骨髓衰竭

阅读:10
作者:Sherif Abdelhamed, Melvin E Thomas 3rd, Tamara Westover, Masayuki Umeda, Emily Xiong, Chandra Rolle, Michael P Walsh, Huiyun Wu, Jason R Schwartz, Virginia Valentine, Marcus Valentine, Stanley Pounds, Jing Ma, Laura J Janke, Jeffery M Klco

Abstract

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-β as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。