Characterization of a full-thickness decellularized and lyophilized human placental membrane for clinical applications

全层脱细胞冻干人胎盘膜的临床应用表征

阅读:8
作者:Bradley Wetzell, Britini Ork, Davorka Softic, Jennifer Morse, William Hutchens, Fanwei Meng, Julie B McLean, Mark A Moore, Xiaofei Qin

Abstract

Allografts derived from live-birth tissue obtained with donor consent have emerged as an important treatment option for wound and soft tissue repairs. Placental membrane derived from the amniotic sac consists of the amnion and chorion, the latter of which contains the trophoblast layer. For ease of cleaning and processing, these layers are often separated with or without re-lamination and the trophoblast layer is typically discarded, both of which can negatively affect the abundance of native biological factors and make the grafts difficult to handle. Thus, a full-thickness placental membrane that includes a fully-intact decellularized trophoblast layer was developed for homologous clinical use as a protective barrier and scaffold in soft tissue repairs. Here, we demonstrate that this full-thickness placental membrane is effectively decellularized while retaining native extracellular matrix (ECM) scaffold and biological factors, including the full trophoblast layer. Following processing, it is porous, biocompatible, supports cell proliferation in vitro, and retains its biomechanical strength and the ability to pass through a cannula without visible evidence of movement or damage. Finally, it was accepted as a natural scaffold in vivo with evidence of host-cell infiltration, angiogenesis, tissue remodelling, and structural layer retention for up to 10 weeks in a murine subcutaneous implant model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。