Perovskite-related ReO3-type structures

钙钛矿相关的 ReO3 型结构

阅读:65
作者:Hayden A Evans, Yue Wu, Ram Seshadri, Anthony K Cheetham

Abstract

Materials with the perovskite ABX3 structure play a major role across materials chemistry and physics as a consequence of their ubiquity and wide range of useful properties. ReO3-type structures can be described as ABX3 perovskites in which the A-cation site is unoccupied, giving rise to the general composition BX3, where B is typically a cation and X is a bridging anion. The chemical diversity of such structures is extensive, ranging from simple oxides and fluorides, such as WO3 and AlF3, to complex structures in which the bridging anion is polyatomic, such as in the Prussian blue-related cyanides Fe(CN)3 and CoPt(CN)6. The same ReO3-type structure is found in metal-organic frameworks, for example, ln (im)3(im = imidazolate) and the well-known MOF-5 structure, where the B-site cation is polyatomic. The extended 3D connectivity and openness of this structure type leads to compounds with interesting and often unusual properties. Notable among these properties are negative thermal expansion (for example, ScF3), photocatalysis (for example, CoSn(OH)6), thermoelectricity (for example, CoAs3) and superconductivity in a phase that is controversially described as SH3 with a doubly interpenetrating ReO3 structure. We present an account of this exciting family of materials and discuss future opportunities in the area.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。