Mathematical modelling with Bayesian inference to quantitatively characterize therapeutic cell behaviour in nerve tissue engineering

利用贝叶斯推理的数学建模定量表征神经组织工程中的治疗细胞行为

阅读:6
作者:Maxime Berg, Despoina Eleftheriadou, James B Phillips, Rebecca J Shipley

Abstract

Cellular engineered neural tissues have significant potential to improve peripheral nerve repair strategies. Traditional approaches depend on quantifying tissue behaviours using experiments in isolation, presenting a challenge for an overarching framework for tissue design. By comparison, mathematical cell-solute models benchmarked against experimental data enable computational experiments to be performed to test the role of biological/biophysical mechanisms, as well as to explore the impact of different design scenarios and thus accelerate the development of new treatment strategies. Such models generally consist of a set of continuous, coupled, partial differential equations relying on a number of parameters and functional forms. They necessitate dedicated in vitro experiments to be informed, which are seldom available and often involve small datasets with limited spatio-temporal resolution, generating uncertainties. We address this issue and propose a pipeline based on Bayesian inference enabling the derivation of experimentally informed cell-solute models describing therapeutic cell behaviour in nerve tissue engineering. We apply our pipeline to three relevant cell types and obtain models that can readily be used to simulate nerve repair scenarios and quantitatively compare therapeutic cells. Beyond parameter estimation, the proposed pipeline enables model selection as well as experiment utility quantification, aimed at improving both model formulation and experimental design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。