Enhanced Transepithelial Riboflavin Delivery Using Femtosecond Laser-Machined Epithelial Microchannels

利用飞秒激光加工的上皮微通道增强跨上皮核黄素输送

阅读:5
作者:Samantha Bradford, Eric Mikula, Yilu Xie, Tibor Juhasz, Donald J Brown, James V Jester

Conclusions

FS corneal epithelial machining can be used to enhance penetration of Rf into the stroma for corneal CXL. Translational relevance: The creation of epithelial microchannels allows for stromal Rf concentrations high enough to perform true transepithelial crosslinking.

Methods

Using a 1030-nm FS laser with 5- to 10-µJ pulse energy, the corneal epithelium of slaughterhouse rabbit eyes was machined to create 2-µm-diameter by 25-µm-long microchannels at a density of 100 or 400 channels/mm2. Rf penetration through the microchannels was then determined by applying 1% Rf in phosphate-buffered saline for 30 minutes followed by removal of the cornea and extraction from the central stromal button. Stromal Rf concentrations were then compared to those obtained using standard epithelial debridement or 0.01% benzalkonium chloride (BAK) to disrupt the epithelial barrier.

Purpose

This study describes a femtosecond laser (FS) approach to machine corneal epithelial microchannels for enhancing riboflavin (Rf) penetration into the cornea prior to corneal crosslinking (CXL).

Results

Microchannels formed using a 5-µJ/pulse at a density of 400 channels/mm2 achieved a stromal Rf concentration that was 50% of that achieved by removal of the corneal epithelium and imbibing with 1% Rf. Stromal Rf levels were also equal to that of debrided corneas soaked with 0.5% Rf, threefold higher than those soaked with 0.1% Rf, and twofold higher than corneas soaked in BAK without epithelial debridement. Organ culture of treated corneas showed a normal corneal epithelium following FS machining while BAK-treated corneas showed extensive epithelial and stromal damage at 24 hours posttreatment. Conclusions: FS corneal epithelial machining can be used to enhance penetration of Rf into the stroma for corneal CXL. Translational relevance: The creation of epithelial microchannels allows for stromal Rf concentrations high enough to perform true transepithelial crosslinking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。