Evaluation of cetuximab as a candidate for targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease

西妥昔单抗作为 HER1 阳性播散性腹膜内疾病靶向 α 粒子放射治疗候选药物的评估

阅读:6
作者:Diane E Milenic, Kwamena E Baidoo, Young-Seung Kim, Martin W Brechbiel

Abstract

Although the epidermal growth factor receptor (EGFR), also known as HER1, has been studied for over a decade, it continues to be a molecule of great interest and focus of investigators for development of targeted therapies. The marketed monoclonal antibody cetuximab binds to HER1, and thus might serve as the basis for creation of imaging or therapies that target this receptor. The potential of cetuximab as a vehicle for the delivery of α-particle radiation was investigated in an intraperitoneal tumor mouse model. The effective working dose of 10 μCi of (212)Pb-cetuximab was determined from a dose (10-50 μCi) escalation study. Toxicity, as indicated by the lack of animal weight loss, was not evident at the 10 μCi dose of (212)Pb-cetuximab. A subsequent study demonstrated (212)Pb-cetuximab had a therapeutic efficacy similar to that of (212)Pb-trastuzumab (p = 0.588). Gemcitabine given 24 h prior to (212)Pb-cetuximab increased the median survival from 174 d to 283 d, but carboplatin suppressed the effectiveness of (212)Pb-cetuximab. Notably, concurrent treatment of tumor-bearing mice with (212)Pb-labeled cetuximab and trastuzumab provided therapeutic benefit that was greater than either antibody alone. In conclusion, cetuximab proved to be an effective vehicle for targeting HER1-expressing tumors with α-radiation for the treatment of disseminated intraperitoneal disease. These studies provide further evidence that the multimodality therapy regimens may have greater efficacy and benefit in the treatment of cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。