Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits

竞争性生活方式下微生物的生长促进了土壤微生物群中耐药基因的增加:基于遗传特征的见解

阅读:31
作者:Zishu Liu, Xiangwu Yao, Chengyi Chen, Yuxiang Zhao, Chifei Dong, Lingtao Sun, Junxian Zhao, Baofeng Zhang, Zhendi Yu, Dongqing Cheng, Lizhong Zhu, Baolan Hu

Background

The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.e., Oxytetracycline, OTC) stresses across the concentrations from the environmental to the clinical. Paired with shot-gun metagenomics analysis and quantification of bacterial growth, trait-based assessment of soil microbiota was applied to reveal the association between key ARG subtypes, representative bacterial taxa, and functional-gene features that drive the growth of ARGs.

Conclusion

The results of this study suggest that microbes with competitive lifestyles are selected under the stress of environmental sub-inhibitory concentrations of antibiotics and nutrient scarcity. They possess greater substrate utilization capacity and carry more ARGs, due to this they were faster growing and leading to a greater increase in the abundance of ARGs. This study has expanded the application of trait-based assessments in understanding the ecology of ARGs propagation. And the finding illustrated changes in soil resistome are accompanied by the lifestyle switching of the microbiome, which theoretically supports the ARGs control approach based on the principle of species competitive exclusion. Video Abstract.

Results

Our results illuminate that resistome variation is closely associated with bacterial growth. A non-monotonic change in ARG abundance and richness was observed over a concentration gradient from none to 10 mg/l. Soil microbiota exposed to intermediate OTC concentrations (i.e., 0.1 and 0.5 mg/l) showed greater increases in the total abundance of ARGs. Community compositionally, the growth of representative taxa, i.e., Pseudomonadaceae was considered to boost the increase of ARGs. It has chromosomally carried kinds of multidrug resistance genes such as mexAB-oprM and mexCD-oprJ could mediate the intrinsic resistance to OTC. Streptomycetaceae has shown a better adaptive ability than other microbes at the clinical OTC concentrations. However, it contributed less to the ARGs growth as it represents a stress-tolerant lifestyle that grows slowly and carries fewer ARGs. In terms of community genetic features, the community aggregated traits analysis further indicates the enhancement in traits of resource acquisition and growth yield is driving the increase of ARGs abundance. Moreover, optimizations in energy production and conversion, alongside a streamlining of bypass metabolic pathways, further boost the growth of ARGs in sub-inhibitory antibiotic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。