Effect of APOL1 disease risk variants on APOL1 gene product

APOL1 疾病风险变异对 APOL1 基因产物的影响

阅读:9
作者:Shabirul Haque, Gauri Patil, Abheepsa Mishra, Xiqian Lan, Waldemar Popik, Ashwani Malhotra, Karl Skorecki, Pravin C Singhal

Abstract

Gene sequence mutations may alter mRNA transcription, transcript stability, protein translation, protein stability and protein folding. Apolipoprotein L1 (APOL1) has two sets of sequence variants that are risk factors for kidney disease development, APOL1G1 (substitution mutation) and APOL1G2 (deletion mutation). Our present study focuses on the impact of these variants on APOL1 mRNA transcription and translation. APOL1 plasmids (EV, G0, G1 and G2) were transfected into human embryonic kidney (HEK) 293T cells. APOL1 variant expression was observed to be significantly lower than that of APOL1G0. Podocyte cell lines stably expressing APOL1 transgenes also showed lower levels of APOL1 expression of APOL1 variants (G1 and G2) compared with APOL1G0 by Western blotting and FACS analysis. The enhanced expression of GRP78 by podocytes expressing APOL1 variants would indicate endoplasmic reticulum (ER) stress. Bioinformatics evaluation using two different programs (MUPro and I-Mutant 2.0) predicted that APOL1 variants were less stable than APOL1G0. Concomitant with protein levels, APOL1 mRNA levels were also depressed following induction of APOL1 variant compared with APOL1G0 in both proliferating and differentiated podocytes. APOL1 mRNA transcript stability was tested after actinomycin D pulsing; APOL1G1 and APOL1G2 mRNAs transcript decayed 10-15% and 15-20% (within a period of 0.5-3 h) respectively. Our data suggest that down-regulated APOL1 protein expression in APOL1 variants is due to compromised transcription and decay of the APOL1 variant transcripts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。