Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice

丁酰胆碱酯酶抑制剂改善小鼠淀粉样β肽引起的认知功能障碍

阅读:5
作者:Yoko Furukawa-Hibi, Tursun Alkam, Atsumi Nitta, Akihiro Matsuyama, Hiroyuki Mizoguchi, Kazuhiko Suzuki, Saliha Moussaoui, Qian-Sheng Yu, Nigel H Greig, Taku Nagai, Kiyofumi Yamada

Abstract

The cholinesterase inhibitor, rivastigmine, ameliorates cognitive dysfunction and is approved for the treatment of Alzheimer's disease (AD). Rivastigmine is a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE); however, the impact of BuChE inhibition on cognitive dysfunction remains to be determined. We compared the effects of a selective BuChE inhibitor, N1-phenethyl-norcymserine (PEC), rivastigmine and donepezil (an AChE-selective inhibitor) on cognitive dysfunction induced by amyloid-β peptide (Aβ(1-40)) in mice. Five-week-old imprinting control region (ICR) mice were injected intracerebroventricularly (i.c.v.) with either Aβ(1-40) or the control peptide Aβ(40-1) on Day 0, and their recognition memory was analyzed by a novel object recognition test. Treatment with donepezil (1.0mg/kg), rivastigmine (0.03, 0.1, 0.3mg/kg) or PEC (1.0, 3.0mg/kg) 20min prior to, or immediately after the acquisition session (Day 4) ameliorated the Aβ(1-40) induced memory impairment, indicating a beneficial effect on memory acquisition and consolidation. In contrast, none of the investigated drugs proved effective when administrated before the retention session (Day 5). Repeated daily administration of donepezil, rivastigmine or PEC, on Days 0-3 inclusively, ameliorated the cognitive dysfunction in Aβ(1-40) challenged mice. Consistent with the reversal of memory impairments, donepezil, rivastigmine or PEC treatment significantly reduced Aβ(1-40) induced tyrosine nitration of hippocampal proteins, a marker of oxidative damage. These results indicate that BuChE inhibition, as well as AChE inhibition, is a viable therapeutic strategy for cognitive dysfunction in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。