Impact of eggshell membrane on metabolism and cell adhesion in oxidatively stressed canine chondrocytes

蛋壳膜对氧化应激犬软骨细胞代谢和细胞粘附的影响

阅读:4
作者:Juraj Vozar, Nikola Hudakova, Natalia Nosalova, Mykhailo Huniadi, Dana Marcincakova, Slavomir Hornak, Lubica Hornakova, Petra Majerova, Dasa Cizkova

Abstract

Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on H2O2-induced oxidative stress in a neonatal canine chondrocytes. The isolated neonatal chondrocytes demonstrated a high proliferation rate and increased glycosaminoglycan (GAG) production during cultivation. In addition, the expression of key cartilage markers, including collagen types II and IX, and aggrecan, confirmed the retention of the chondrocyte phenotype. Under in vitro conditions, post-treatment with ESM improved chondrocyte viability, indicating that ESM may have a reparative role in mitigating oxidative damage. This significant therapeutic potential was validated through XTT assays, which measured cell metabolic activity at 24 h, and Real-time Cell Analysis (RTCA), providing continuous monitoring over 98 h. In contrast, the preventive effects of ESM against stress were observed exclusively in the XTT analysis. By investigating these aspects, we provide insight into the potential of ESM proteins to protect chondrocytes from oxidative damage, particularly in cartilage repair and joint health. This study is one of the first to create a vital platform based on canine neonatal chondrocytes for monitoring dietary supplements designed to prevent or repair dog cartilage damage. Thus, the study offers a valuable contribution to understanding how ESM bioactive compounds can be used therapeutically, bridging the gap between in vitro findings and practical applications in veterinary medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。