IL-22-mediated renal metabolic reprogramming via PFKFB3 to treat kidney injury

IL-22 通过 PFKFB3 介导肾脏代谢重编程治疗肾损伤

阅读:20
作者:Wei Chen, Yilan Shen, Jiajun Fan, Xian Zeng, Xuyao Zhang, Jingyun Luan, Yichen Wang, Jinghui Zhang, Si Fang, Xiaobin Mei, Zhen Zhao, Dianwen Ju

Abstract

Kidney damage initiates the deteriorating metabolic states in tubule cells that lead to the development of end-stage renal disease (ESTD). Interleukin-22 (IL-22) is an effective therapeutic antidote for kidney injury via promoting kidney recovery, but little is known about the underlying molecular mechanisms. Here, we first provide evidence that IL-22 attenuates kidney injury via metabolic reprogramming of renal tubular epithelial cells (TECs). Specifically, our data suggest that IL-22 regulates mitochondrial function and glycolysis in damaged TECs. Further observations indicate that IL-22 alleviates the accumulation of mitochondrial reactive oxygen species (ROS) and dysfunctional mitochondria via the induction of AMPK/AKT signaling and PFBFK3 activities. In mice, amelioration of kidney injury and necrosis and improvement of kidney functions via regulation of these metabolism relevant signaling and mitochondrial fitness of recombinant IL-22 are certificated in cisplatin-induced kidney damage and diabetic nephropathy (DN) animal models. Taken together, our findings unravel new mechanistic insights into protective effects of IL-22 on kidneys and highlight the therapeutic opportunities of IL-22 and the involved metabolic regulators in various kidney diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。