Scratch-Based Isolation of Primary Cells (SCIP): A Novel Method to Obtain a Large Number of Human Dental Pulp Cells Through One-Step Cultivation

基于划痕的原代细胞分离 (SCIP):一种通过一步培养获得大量人类牙髓细胞的新方法

阅读:6
作者:Yuki Kiyokawa, Masahiko Terajima, Masahiro Sato, Emi Inada, Yuria Hori, Ryo Bando, Yoko Iwase, Naoko Kubota, Tomoya Murakami, Hiroko Tsugane, Satoshi Watanabe, Takahiro Sonomura, Miho Terunuma, Takeyasu Maeda, Hirofumi Noguchi, Issei Saitoh

Background

Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection

Conclusions

This method, termed "scratch-based isolation of primary cells from human dental pulps (SCIP)", enables the efficient isolation of a large number of DP cells with minimal equipment and operator variability, while preserving cell integrity. Its simplicity, high success rate, and adaptability for patients with genetic diseases make it a valuable tool for regenerative medicine research and clinical applications.

Methods

We developed a novel and efficient method to obtain a sufficient number of cells through a one-step cultivation process of isolated DP. After the brief digestion of DP with proteolytic enzymes, it was scratched onto a culture dish and cultured in a suitable medium. By day 2, the cells began to spread radially from DP, and by day 10, they reached a semi-confluent state. Cells harvested through trypsinization consistently yielded over 1 million cells, and after re-cultivation, the cells could be propagated for more than ten passages.

Results

The proliferative and differentiation capacities of the cells after the 10th passage were comparable to those from the first passage. The cells expressed alkaline phosphatase as an undifferentiation marker. Similarly, they also maintained the constitutive expression of stem cell-specific markers and differentiation-related markers, even after the 10th passage. Conclusions: This method, termed "scratch-based isolation of primary cells from human dental pulps (SCIP)", enables the efficient isolation of a large number of DP cells with minimal equipment and operator variability, while preserving cell integrity. Its simplicity, high success rate, and adaptability for patients with genetic diseases make it a valuable tool for regenerative medicine research and clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。