Pathological changes of highly pathogenic Bacillus cereus on Pelodiscus sinensis

高致病性蜡状芽孢杆菌对中华鳖的病理变化

阅读:9
作者:Zidong Xiao, Mengmeng Cheng, Xiaowei Hu, Mingyang Xue, Nan Jiang, Wei Liu, Yuding Fan, Yan Meng, Chen Xu, Yong Zhou

Abstract

An outbreak of a disease with a high mortality rate occurred in a Chinese Softshell Turtle (Pelodiscus sinensis) farm in Hubei Province. This study isolated a highly pathogenic Bacillus cereus strain (Y271) from diseased P. sinensis. Y271 has β hemolysis, containing both Hemolysin BL (hblA, hblC, and hblD), Non-hemolytic enterotoxin, NHE (nheA, nheB, and nheC), and Enterotoxin FM (entFM) genes. Y271 is highly pathogenic against P. sinensis with an LD50 = 6.80 × 103 CFU/g weight. B. cereus was detected in multiple tissues of the infected P. sinensis. Among them, spleen tissue showed the highest copy number density (1.54 ± 0.12 × 104 copies/mg). Multiple tissues and organs of diseased P. sinensis exhibited significant pathological damage, especially the spleen, liver, kidney, and intestine. It showed obvious tissue structure destruction, lesions, necrosis, red blood cells, and inflammatory cell infiltration. B. cereus proliferating in the spleen, liver, and other tissues was observed. The intestinal microbiota of the diseased P. sinensis was altered, with a greater abundance of Firmicutes, Fusobacterium, and Actinomyces than in the healthy group. Allobaculum, Rothia, Aeromonas, and Clostridium abundance were higher in the diseased group than in the healthy group. The number of unique microbial taxa (472) in the disease group was lower than that of the healthy group (705). Y271 was sensitive to multiple drugs, including florfenicol, enrofloxacin, neomycin, and doxycycline. B. cereus is the etiological agent responsible for the massive death of P. sinensis and reveals its potential risks during P. sinensis cultivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。