Metal Oxide Engineered Nanomaterials Modulate Rabbit Corneal Fibroblast to Myofibroblast Transformation

金属氧化物工程纳米材料调节兔角膜成纤维细胞向肌成纤维细胞转化

阅读:5
作者:Atsuhiko Fukuto, Soohyun Kim, Jennifer Kang, Brooke L Gates, Maggie W Chang, Kent E Pinkerton, Laura S Van Winkle, Yoshiaki Kiuchi, Christopher J Murphy, Brian C Leonard, Sara M Thomasy

Conclusions

Fe2O3 NPs promote corneal myofibroblast induction in vitro but do not impair corneal stromal wound healing in vivo. Translational relevance: These experimental results can apply to human nanomedical research.

Methods

Cell viability of rabbit corneal fibroblasts (RCFs) was tested following treatment with 11 metal oxide ENMs at concentrations of 0.5 to 250 µg/ml for 24 hours. Messenger RNA (mRNA) and protein expression of αSMA, a marker of myofibroblast transformation, were measured using RCFs after exposure to 11 metal oxide ENMs at a concentration that did not affect cell viability, in media containing either 0 or 10 ng/ml of TGF-β1. Additionally, the effect of topical Fe2O3 nanoparticles (NPs) (50 ng/ml) on corneal stromal wound healing following phototherapeutic keratectomy (PTK) was determined.

Purpose

Corneal keratocyte-fibroblast-myofibroblast (KFM) transformation plays a critical role in corneal stromal wound healing. However, the impact of engineered nanomaterials (ENMs), found in an increasing number of commercial products, on this process is poorly studied. This study investigates the effects of metal oxide ENMs on KFM transformation in vitro and in vivo.

Results

V2O5, Fe2O3, CuO, and ZnO ENMs were found to significantly reduce cell viability as compared to vehicle control and the other seven metal oxide ENMs tested. V2O5 nanoflakes significantly reduced mRNA and protein αSMA concentrations in the presence of TGF-β1. Fe2O3 NPs significantly increased αSMA mRNA expression in the presence of TGF-β1 but did not alter αSMA protein expression. Topically applied Fe2O3 NPs in an in vivo rabbit corneal stromal wound healing model did not delay healing. Conclusions: Fe2O3 NPs promote corneal myofibroblast induction in vitro but do not impair corneal stromal wound healing in vivo. Translational relevance: These experimental results can apply to human nanomedical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。