Muscarinic Receptor Stimulation Does Not Inhibit Voltage-dependent Ca2+ Channels in Rat Adrenal Medullary Chromaffin Cells

毒蕈碱受体刺激不会抑制大鼠肾上腺髓质嗜铬细胞中的电压依赖性 Ca2 + 通道

阅读:6
作者:Keita Harada, Masumi Inoue

Abstract

Adrenal medullary chromaffin (AMC) and sympathetic ganglion cells are derived from the neural crest and show a similar developmental path. Thus, these two cell types have many common properties in membrane excitability and signaling. However, AMC cells function as endocrine cells while sympathetic ganglion cells are neurons. In rat sympathetic ganglion cells, muscarinic M1 and M4 receptors mediate excitation and inhibition via suppression of M-type K+ channels and suppression of voltage-dependent Ca2+ channels, respectively. On the other hand, M1 receptor stimulation in rat AMC cells also produces excitation by suppressing TWIK-related acid sensitive K+ (TASK) channels. However, whether M4 receptors are coupled with voltage-dependent Ca2+ channel suppression is unclear. We explore this issue electrophysiologically and biochemically. Electrical stimulation of nerve fibers in rat adrenal glands trans-synaptically increased the Ca2+ signal in AMC cells. This electrically evoked increased Ca2+ signal was not altered during muscarine-induced increase in Ca2+ signal, whereas it decreased significantly during a GABA-induced increase, due to a shunt effect of increased Cl- conductance. The whole-cell current recordings revealed that voltage-dependent Ca2+ currents in AMC cells were suppressed by adenosine triphosphate, but not by muscarinic agonists. The fractionation analysis and immunocytochemistry indicated that CaV1.2 Ca2+ channels and M4 receptors are located in the raft and non-raft membrane domains, respectively. We concluded that muscarinic stimulation in rat AMC cells does not produce voltage-dependent Ca2+ channel inhibition. This lack of muscarinic inhibition is at least partly due to physical separation of voltage-dependent Ca2+ channels and M4 receptors in the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。