Chronic heart failure reduces Akt phosphorylation in human skeletal muscle: relationship to muscle size and function

慢性心力衰竭降低人类骨骼肌中 Akt 磷酸化:与肌肉大小和功能的关系

阅读:6
作者:Michael J Toth, Kimberly Ward, Jos van der Velden, Mark S Miller, Peter Vanburen, Martin M Lewinter, Philip A Ades

Abstract

Patients with chronic heart failure (HF) frequently lose muscle mass and function during the course of the disease. A reduction in anabolic stimuli to the muscle has been put forth as a potential mechanism underlying these alterations. The present study examined the hypothesis that skeletal muscle tissue from HF patients would show reduced IGF-1 expression and phosphorylation of signaling molecules downstream of receptor activation. To isolate the unique effect of HF on these variables, we limited the confounding effects of muscle disuse and/or acute disease exacerbation by recruiting controls (n = 11) with similar physical activity levels as HF patients (n = 11) and by testing patients at least 6 mo following any bouts of disease exacerbation/hospitalization. IGF-1 expression in skeletal muscle was similar between patients and controls. Despite this, HF patients were characterized by reduced levels of phospho-Akt/Akt (S473; -43%; P < 0.05), whereas no differences were found in total Akt protein content or phospho- or total protein content of mammalian target of rapamycin (mTOR; S2448), glycogen synthase kinase-3β (GSK-3β; S9), eukaryotic translation initiation factor 4E binding protein-1 (eIF4E-BP; T37/46), p70 ribosomal S6 kinase (p70 S6K; T389), or eIF2Bε (S540). Reduced phospho-Akt/Akt levels and phospho-mTOR/mTOR were related to decreased skeletal muscle myosin protein content (r = 0.602; P < 0.02) and knee extensor isometric torque (r = 0.550; P < 0.05), respectively. Because patients and controls were similar for age, muscle mass, and physical activity, we ascribe the observed alterations in Akt phosphorylation and its relationship to myosin protein content to the unique effects of the HF syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。