Mentholation affects the cigarette microbiota by selecting for bacteria resistant to harsh environmental conditions and selecting against potential bacterial pathogens

薄荷醇化通过选择能够抵抗恶劣环境条件的细菌和选择潜在的细菌病原体来影响香烟微生物群

阅读:5
作者:Jessica Chopyk, Suhana Chattopadhyay, Prachi Kulkarni, Emma Claye, Kelsey R Babik, Molly C Reid, Eoghan M Smyth, Lauren E Hittle, Joseph N Paulson, Raul Cruz-Cano, Mihai Pop, Stephanie S Buehler, Pamela I Clark, Amy R Sapkota, Emmanuel F Mongodin

Background

There is a paucity of data regarding the microbial constituents of tobacco products and their impacts on public health. Moreover, there has been no comparative characterization performed on the bacterial microbiota associated with the addition of menthol, an additive that has been used by tobacco manufacturers for nearly a century. To address this knowledge gap, we conducted bacterial community profiling on tobacco from user- and custom-mentholated/non-mentholated cigarette pairs, as well as a commercially-mentholated product. Total genomic DNA was extracted using a multi-step enzymatic and mechanical lysis protocol followed by PCR amplification of the V3-V4 hypervariable regions of the 16S rRNA gene from five cigarette products (18 cigarettes per product for a total of 90 samples): Camel Crush, user-mentholated Camel Crush, Camel Kings, custom-mentholated Camel Kings, and Newport Menthols. Sequencing was performed on the Illumina MiSeq platform and sequences were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software package.

Conclusions

Taken together, these data provide preliminary evidence that the mentholation of commercially available cigarettes can impact the bacterial community of these products.

Results

In all products, Pseudomonas was the most abundant genera and included Pseudomonas oryzihabitans and Pseudomonas putida, regardless of mentholation status. However, further comparative analysis of the five products revealed significant differences in the bacterial compositions across products. Bacterial community richness was higher among non-mentholated products compared to those that were mentholated, particularly those that were custom-mentholated. In addition, mentholation appeared to be correlated with a reduction in potential human bacterial pathogens and an increase in bacterial species resistant to harsh environmental conditions. Conclusions: Taken together, these data provide preliminary evidence that the mentholation of commercially available cigarettes can impact the bacterial community of these products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。