Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate

加氏乳杆菌通过丁酸预防依鲁替尼相关的心房颤动

阅读:6
作者:Ling Shi, Yu Duan, Ning Fang, Ning Zhang, Sen Yan, Kunna Wang, Te Hou, Zhiqi Wang, Xiaohui Jiang, Qianhui Gao, Song Zhang, Yue Li, Yun Zhang, Yongtai Gong

Background

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Method: Utilizing 16S rRNA gene sequencing, faecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms. Result: We found that ibrutinib administration pre-disposes rats to AF. Interestingly, ibrutinib-associated microbial transplantation conferred increased susceptibility to AF in rats. Notably, ibrutinib induced a significantly decrease in the abundance of Lactobacillus gasseri (L. gasseri), and oral supplementation of L. gasseri or its metabolite, butyrate (BA), effectively prevented rats from ibrutinib-induced AF. Mechanistically, BA inhibits the generation of reactive oxygen species, thereby ameliorating atrial structural remodelling. Furthermore, we demonstrated that ibrutinib inhibited the growth of L. gasseri by disrupting the intestinal barrier integrity.

Conclusion

Collectively, our findings provide compelling experimental evidence supporting the potential efficacy of targeting gut microbes in preventing ibrutinib-associated AF, opening new avenues for therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。