Conclusion
The collective results suggested that levetiracetam may be able to treat neuroinflammatory-related memory loss by enhancing cholinergic activity while reducing neuroinflammation, cellular apoptosis, and oxidative stress.
Results
In lipopolysaccharide-induced rats, levetiracetam indicated a reduction (p < 0.01) in transfer latency using the elevated plus-maze. An improvement (p < 0.01) in novel and familiar objects exploration time using novel object recognition test. A rise (p < 0.05) in novel arm entries and extended time spent in the novel arm using the Y-maze test. In extension, the levels of acetylcholine (p < 0.001), anti-inflammatory factors (transforming growth factor-β1; p < 0.01 and interleukin-10; p < 0.05), and an antioxidant (catalase; p < 0.01) were elevated in lipopolysaccharide-induced rats after the administration of levetiracetam. In contrast, inflammatory factors (cyclooxygenase-2; p < 0.05, nuclear factor kappa B; p < 0.05, tumor necrosis factor-α; p < 0.01, and interleukin-6 (p < 0.01), apoptosis inducers (BCL2-associated X protein; p < 0.05 and Caspase-3 (p < 0.001), and oxidative stress (malondialdehyde; p < 0.05) were considerably reduced with levetiracetam in lipopolysaccharide-induced rats.
