Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3

中性粒细胞衍生的腺苷调节 SLC26A3 来适应炎症酸度

阅读:6
作者:Ian M Cartwright #, Valerie F Curtis #, Jordi M Lanis, Erica E Alexeev, Nichole Welch, Matthew S Goldberg, Rachel E M Schaefer, Rachel Y Gao, Carlene Chun, Blair Fennimore, Joseph C Onyiah, Mark E Gerich, Peter J Dempsey, Sean P Colgan

Abstract

Acute intestinal inflammation includes the early accumulation of neutrophils (PMN). Based on recent evidence that PMN infiltration "imprints" changes in the local tissue environment through local oxygen depletion and the release of adenine nucleotides, we hypothesized that the interaction between transmigrating PMN and intestinal epithelial cells (IECs) results in inflammatory acidification of the tissue. Using newly developed tools, we revealed that active PMN transepithelial migration (TEM) significantly acidifies the local microenvironment, a decrease of nearly 2 pH units. Using unbiased approaches, we sought to define acid-adaptive pathways elicited by PMN TEM. Given the significant amount of adenosine (Ado) generated during PMN TEM, we profiled the influence of Ado on IECs gene expression by microarray and identified the induction of SLC26A3, the major apical Cl-/HCO3- exchanger in IECs. Utilizing loss- and gain-of-function approaches, as well as murine and human colonoids, we demonstrate that Ado-induced SLC26A3 promotes an adaptive IECs phenotype that buffers local pH during active inflammation. Extending these studies, chronic murine colitis models were used to demonstrate that SLC26A3 expression rebounds during chronic DSS-induced inflammation. In conclusion, Ado signaling during PMN TEM induces an adaptive tissue response to inflammatory acidification through the induction of SLC26A3 expression, thereby promoting pH homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。