Leishmania braziliensis replication protein A subunit 1: molecular modelling, protein expression and analysis of its affinity for both DNA and RNA

巴西利什曼原虫复制蛋白 A 亚基 1:分子建模、蛋白质表达及其对 DNA 和 RNA 的亲和力分析

阅读:9
作者:Paola A Nocua, Cesar A Ramirez, George E Barreto, Janneth González, José M Requena, Concepción J Puerta

Background

Replication factor A (RPA) is a single-strand DNA binding protein involved in DNA replication, recombination and repair processes. It is composed by the subunits RPA-1, RPA-2 and RPA-3; the major DNA-binding activity resides in the subunit 1 of the heterotrimeric RPA complex. In yeast and higher eukaryotes, besides the three basic structural DNA-binding domains, the RPA-1 subunit contains an N-terminal region involved in protein-protein interactions with a fourth DNA-binding domain. Remarkably, the N-terminal extension is absent in the RPA-1 of the pathogenic protozoan Leishmania (Leishmania) amazonensis; however, the protein maintains its ability to bind ssDNA. In a recent work, we identify Leishmania (Viannia) braziliensis RPA-1 by its specific binding to the untranslated regions of the HSP70 mRNAs, suggesting that this protein might be also an RNA-binding protein.

Conclusion

The LbRPA-1 protein is a ssDNA binding protein, but also it shows affinity in vitro for the HSP70 mRNA; this finding supports a possible in vivo role in the HSP70 mRNA metabolism. On the other hand, the three dimensional model of Leishmania RPA-1 serves as a starting point for both functional analysis and its exploration as a chemotherapeutic target to combat leishmaniasis.

Methods

Both rLbRPA-1 purified by His-tag affinity chromatography as well as the in vitro transcribed L. braziliensis 3' HSP70-II UTR were used to perform pull down assays to asses nucleic acid binding properties. Also, homology modeling was carried out to construct the LbRPA-1 tridimensional structure to search relevant amino acid residues to bind nucleic acids.

Results

In this work, after obtaining the recombinant L. braziliensis RPA-1 protein under native conditions, competitive and non-competitive pull-down assays confirmed the single-stranded DNA binding activity of this protein and demonstrated its interaction with the 3' UTR from the HSP70-II mRNA. As expected, this protein exhibits a high affinity for ssDNA, but we have found that RPA-1 interacts also with RNA. Additionally, we carried out a structural analysis of L. braziliensis RPA-1 protein using the X-ray diffraction structure of Ustilago maydis homologous protein as a template. Our results indicate that, in spite of the evolutionary divergence between both organisms, the structure of these two RPA-1 proteins seems to be highly conserved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。