Single-cell RNA-seq reveals clonal diversity and prognostic genes of relapsed multiple myeloma

单细胞 RNA 测序揭示复发性多发性骨髓瘤的克隆多样性和预后基因

阅读:9
作者:Haiyan He, Zifeng Li, Jing Lu, Wanting Qiang, Sihan Jiang, Yaochen Xu, Weijun Fu, Xiaowen Zhai, Lin Zhou, Maoxiang Qian, Juan Du

Background

Multiple myeloma (MM) is a clinically and biologically heterogeneous plasma-cell malignancy. Despite extensive research, disease heterogeneity and relapse remain a big challenge in MM therapeutics. We tried to dissect this disease and identify novel biomarkers for patient stratification and treatment outcome prediction by applying single-cell technology.

Conclusions

Our data provide insights into the heterogeneity of MM as well as highlight the relevance of intra-tumour heterogeneity and discover novel biomarkers that might be a potent therapy.

Methods

We performed single-cell RNA sequencing (scRNA-seq) and variable-diversity-joining regions-targeted sequencing (scVDJ-seq) concurrently on bone marrow samples from a cohort of 18 patients with newly diagnosed MM (NDMM; n = 12) or refractory/relapsed MM (RRMM; n = 6). We analysed the malignant clonotypes using scVDJ-seq data and conducted data integration and cell-type annotation through the CCA algorithm based on gene expression profiling. Furthermore, we identified disease status-specific genes and modules by comparison of NDMM and RRMM datasets and explored the findings in a larger MM cohort from the MMRF CoMMpass study.

Results

We found that all the myeloma cells in either diagnosed or relapsed samples were dominated by a major clone, with a few subclones in several samples (n = 5). Next, we investigated the universal transcriptional features of myeloma cells and identified eight meta-programs correlated with this disease, especially meta-programs 1 and 8 (M1 and M8), which were the most significant and related to cell cycle and stress response, respectively. Furthermore, we classified the malignant plasma cells into eight clusters and found that the cell numbers in clusters 2/6/7 were exclusively higher in relapsed samples. Besides, we identified several attractive candidates for biomarkers (e.g. SMAD1 and STMN1) associated with disease progression and relapse in our dataset and related to overall survival in the CoMMpass dataset. Conclusions: Our data provide insights into the heterogeneity of MM as well as highlight the relevance of intra-tumour heterogeneity and discover novel biomarkers that might be a potent therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。