SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases

SMYD2介导的TRAF2甲基化促进炎症疾病中的NF-κB信号通路

阅读:9
作者:Weijun Wu, Jinghuan Wang, Chenxi Xiao, Zhenghua Su, Haibi Su, Wen Zhong, Jianchun Mao, Xinhua Liu, Yi Zhun Zhu

Background

The methylation of lysine residues has been involved in the multiple biological and diseases processes. Recently, some particular non-histone proteins have been elucidated to be methylated by SMYD2, a SET and MYND domain protein with lysine methyltransferase activity.

Conclusions

Our data uncovered an unprecedented cytoplasmic protein network that employed methylation of TRAF2 for the maintenance of NF-κB activation during inflammatory diseases.

Methods

SMYD2 was evaluated in synovial tissue and cells derived from rheumatoid arthritis patients. We confirmed TRAF2 could be methylated by SMYD2 using Mass spectrometry, pull-down, immunoprecipitation, methyltransferase assay, ubiquitination assay, luciferase reporter assays, and western blot analyses. Using loss- and gain-of function studies, we explored the biological functions of SMYD2 in vitro and in vivo. Using acute and chronic inflammation with different mice models to determine the impact of SMYD2.

Results

Here, we first time confirmed that the cytoplasmic protein TRAF2 as the kernel node for NF-κB signaling pathway could be methylated by SMYD2. SMYD2-mediated TRAF2 methylation contributed to the durative sensitization of NF-κB signaling transduction through restraining its own proteolysis and enhancing the activity. In addition, we found knocking down of SMYD2 has different degrees of mitigation in acute and chronic inflammation mice models. Furthermore, as the lysine-specific demethylase, LSD1 could resist methylation on TRAF2 induced by SMYD2. Conclusions: Our data uncovered an unprecedented cytoplasmic protein network that employed methylation of TRAF2 for the maintenance of NF-κB activation during inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。