Epithelial NSD2 maintains FMO-mediated taurine biosynthesis to prevent intestinal barrier disruption

上皮 NSD2 维持 FMO 介导的牛磺酸生物合成以防止肠道屏障破坏

阅读:9
作者:Yue Xu, Xiuying Xiao, Chunxiao Ma, Ziyi Wang, Wenxin Feng, Hanyu Rao, Wei Zhang, Ningyuan Liu, Rebiguli Aji, Xiangjun Meng, Wei-Qiang Gao, Li Li

Background

Inflammatory bowel disease (IBD) presents a significant challenge due to its intricate pathogenesis. NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, is associated with transcriptional activation. NSD2 expression is decreased in both the intestinal epithelial cells (IECs) of IBD patients and the IBD mouse model. However, the precise role of NSD2 in IBD remains unexplored.

Conclusions

These data demonstrate that NSD2 plays a pivotal role in maintaining FMO-mediated taurine biosynthesis to prevent intestinal inflammation. Our findings also underscore the importance of NSD2-H3K36me2-mediated taurine biosynthesis in maintaining intestinal mucosal barrier homeostasis. Key points: In this study, we investigated the role of the histone methyltransferase NSD2 in preventing intestinal barrier disruption by sustaining taurine biosynthesis. NSD2 levels were reduced in both human specimens and mouse models of IBD. We demonstrate that NSD2 loss hinders the process of taurine synthesis in intestinal cells, leading to increased intestinal inflammation. Supplementation with taurine significantly relieved the symptoms caused by NSD2 deficiency. These data suggest that maintenance of NSD2-mediated taurine biosynthesis is vital for preserving the intestinal barrier and attenuating inflammation.

Methods

Colon tissues from IBD mice, SW620 cells and MC38 cells, were used as research subjects. Clinical databases of IBD patients were analysed to investigate whether NSD2 expression is reduced in the occurrence of IBD. NSD2-knockout mice were generated to further investigate the role of NSD2 in IBD. The IECs were isolated for RNA sequencing and chromatin immunoprecipitation sequencing to identify molecular signalling pathways and key molecules leading to IBD in mice. Molecular and cellular experiments were conducted to analyse and validate the role of NSD2 in the development of IBD. Finally, rescue experiments were performed to confirm the molecular mechanism of NSD2 in the development of IBD.

Results

Deficiency of NSD2 in mouse IECs aggravated epithelial barrier disruption and inflammatory response in IBD. Mechanistically, NSD2 loss led to downregulation of H3K36me2 and flavin-containing monooxygenase (FMO) (taurine-synthesis enzyme) mRNA, resulting in decreased taurine biosynthesis in IECs. Significantly, supplementation with taurine markedly alleviated the symptoms of NSD2 deficiency-induced IBD. Conclusions: These data demonstrate that NSD2 plays a pivotal role in maintaining FMO-mediated taurine biosynthesis to prevent intestinal inflammation. Our findings also underscore the importance of NSD2-H3K36me2-mediated taurine biosynthesis in maintaining intestinal mucosal barrier homeostasis. Key points: In this study, we investigated the role of the histone methyltransferase NSD2 in preventing intestinal barrier disruption by sustaining taurine biosynthesis. NSD2 levels were reduced in both human specimens and mouse models of IBD. We demonstrate that NSD2 loss hinders the process of taurine synthesis in intestinal cells, leading to increased intestinal inflammation. Supplementation with taurine significantly relieved the symptoms caused by NSD2 deficiency. These data suggest that maintenance of NSD2-mediated taurine biosynthesis is vital for preserving the intestinal barrier and attenuating inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。