Dual functionality of the anti-beta1 integrin antibody, 12G10, exemplifies agonistic signalling from the ligand binding pocket of integrin adhesion receptors

抗 β1 整合素抗体 12G10 的双重功能体现了整合素粘附受体的配体结合口袋发出的激动信号

阅读:5
作者:Jonathan D Humphries, Neil R Schofield, Zohreh Mostafavi-Pour, Linda J Green, Alistair N Garratt, A Paul Mould, Martin J Humphries

Abstract

Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。