Determination of Growth-Phase Dependent Influences Exerted by Prions on Yeast Lipid Content Using HPTLC-Densitometry

使用 HPTLC-密度测定法测定朊病毒对酵母脂质含量产生的生长阶段依赖性影响

阅读:17
作者:Q Bui, J Sherma, B Fried, J K Hines

Abstract

Prions of the baker's yeast Saccharomyces cerevisiae allow for the inheritance of complex traits based solely on the acquisition of cytoplasmic protein aggregates and confer distinctive phenotypes to the cells which harbor them, creating heterogeneity within an otherwise clonal cell population. These phenotypes typically arise from a loss-of-function of the prion-forming protein that is unable to perform its normal cellular function(s) while sequestered in prion amyloid aggregates, but the specific biochemical consequences of prion infection are poorly understood. To begin to address this issue, we initiated a direct investigation into the potential control that yeast prions exert over fungal lipid content by utilizing the prions [URE3] and [PSI+], the first two prions discovered in yeast. We utilized silica gel high-performance thin-layer chromatography (HPTLC)-densitometry to conduct pair-wise quantifications of the relative levels of free sterols, free fatty acids, and triacylglycerols [petroleum ether-diethyl ether-acetic acid (80:20:1) mobile phase, phosphomolybdic acid (PMA) detection reagent]; steryl esters and squalene (hexane-petroleum ether-diethyl ether-acetic acid (50:20;5:1), PMA]; and phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol (chloroform-diethyl ether-acetic acid (65:25:4.5), cupric sulfate-phosphoric acid) in otherwise clonal prion-infected ([PSI+] or [URE3]) and prion-free ([psi-] or [ure-o]) cells in two growth phases: log-phase and stationary phase. Our analysis revealed multiple statistically significant differences (p < 0.00625) between prion-infected and prion-free cells. Interestingly, prion-induced changes varied dramatically by growth phase, indicating that prions exert differential influences on cell physiology between log and stationary growth. Further experimental replication and extension of the analysis to other prions is expected to resolve additional physiological effects of prion infection. This investigation demonstrates that HPTLC-densitometry is an effective method for studying prion-induced alterations in lipid content in yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。