The MAP3K13-TRIM25-FBXW7α axis affects c-Myc protein stability and tumor development

MAP3K13-TRIM25-FBXW7α 轴影响 c-Myc 蛋白稳定性和肿瘤发展

阅读:7
作者:Qiang Zhang, Xu Li, Kasa Cui, Cheng Liu, Mingzhi Wu, Edward V Prochownik, Youjun Li

Abstract

c-Myc (Myc) is a master transcription factor that is often deregulated and highly expressed by at least 50% of cancers. In many cases, Myc protein levels correlate with resistance to therapy and poor prognosis. However, effective direct inhibition of Myc by pharmacologic approaches has remained unachievable. Here, we identify MAP3K13 as a positive regulator of Myc to promote tumor development. Our findings show that MAP3K13 upregulation is predictive of poor outcomes in patients with hepatocellular carcinoma (HCC). Mechanistically, MAP3K13 phosphorylates the E3 ubiquitin ligase TRIM25 at Ser12 to decrease its polyubiquitination and proteasomal degradation. This newly stabilized TRIM25 then directly ubiquitinates Lys412 of FBXW7α, a core subunit of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex involved in Myc ubiquitination, thereby stabilizing Myc. Together, these results reveal a novel regulatory pathway that supervises Myc protein stability via the MAP3K13-TRIM25-FBXW7α signaling axis. In addition, they provide a potential therapeutic target in Myc over-expressing human cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。