Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting

基于有机金属卤化物钙钛矿的光电化学模块系统,用于可扩展的无辅助太阳能水分解

阅读:6
作者:Hojoong Choi, Sehun Seo, Chang Jae Yoon, Jae-Bin Ahn, Chan-Sol Kim, Yoonsung Jung, Yejoon Kim, Francesca M Toma, Heejoo Kim, Sanghan Lee

Abstract

Despite achievements in the remarkable photoelectrochemical (PEC) performance of photoelectrodes based on organometal halide perovskites (OHPs), the scaling up of small-scale OHP-based PEC systems to large-scale systems remains a great challenge for their practical application in solar water splitting. Significant resistive losses and intrinsic defects are major obstacles to the scaling up of OHP-based PEC systems, leading to the PEC performance degradation of large-scale OHP photoelectrodes. Herein, a scalable design of the OHP-based PEC systems by modularization of the optimized OHP photoelectrodes exhibiting a high solar-to-hydrogen conversion efficiency of 10.4% is suggested. As a proof-of-concept, the OHP-based PEC module achieves an optimal PEC performance by avoiding major obstacles in the scaling up of the OHP photoelectrodes. The constructed OHP module is composed of a total of 16 OHP photoelectrodes, and a photocurrent of 11.52 mA is achieved under natural sunlight without external bias. The successful operation of unassisted solar water splitting using the OHP module without external bias can provide insights into the design of scalable OHP-based PEC systems for future practical application and commercialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。