Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution

融合光谱和钴电化学数据估算水培溶液中的磷酸盐浓度

阅读:2
作者:Dae-Hyun Jung, Hak-Jin Kim, Hyoung Seok Kim, Jaeyoung Choi, Jeong Do Kim, Soo Hyun Park

Abstract

Phosphate is a key element affecting plant growth. Therefore, the accurate determination of phosphate concentration in hydroponic nutrient solutions is essential for providing a balanced set of nutrients to plants within a suitable range. This study aimed to develop a data fusion approach for determining phosphate concentrations in a paprika nutrient solution. As a conventional multivariate analysis approach using spectral data, partial least squares regression (PLSR) and principal components regression (PCR) models were developed using 56 samples for calibration and 24 samples for evaluation. The R2 values of estimation models using PCR and PLSR ranged from 0.44 to 0.64. Furthermore, an estimation model using raw electromotive force (EMF) data from cobalt electrodes gave R2 values of 0.58-0.71. To improve the model performance, a data fusion method was developed to estimate phosphate concentration using near infrared (NIR) spectral and cobalt electrochemical data. Raw EMF data from cobalt electrodes and principle component values from the spectral data were combined. Results of calibration and evaluation tests using an artificial neural network estimation model showed that R2 = 0.90 and 0.89 and root mean square error (RMSE) = 96.70 and 119.50 mg/L, respectively. These values are sufficiently high for application to measuring phosphate concentration in hydroponic solutions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。