GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection

GmWAK1,一种新型细胞壁相关蛋白激酶,正向调节大豆对大豆疫霉菌感染的反应

阅读:8
作者:Ming Zhao, Ninghui Li, Simei Chen, Junjiang Wu, Shengfu He, Yuxin Zhao, Xiran Wang, Xiaoyu Chen, Chuanzhong Zhang, Xin Fang, Yan Sun, Bo Song, Shanshan Liu, Yaguang Liu, Pengfei Xu, Shuzhen Zhang

Abstract

Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。