In Vivo Biocompatibility and Improved Compression Strength of Reinforced Keratin/Hydroxyapatite Scaffold

增强角蛋白/羟基磷灰石支架的体内生物相容性和提高的抗压强度

阅读:9
作者:Jie Fan, Meng-Yan Yu, Tong-da Lei, Yong-Heng Wang, Fu-Yuan Cao, Xiao Qin, Yong Liu

Abstract

A rapid freezing/lyophilizing/reinforcing process is suggested to fabricate reinforced keratin/hydroxyapatite (HA) scaffold with improved mechanical property and biocompatibility for tissue engineering. The keratin, extracted from human hair, and HA mixture were rapidly frozen with liquid nitrogen and then lyophilized to prepare keratin/HA laminar scaffold. The scaffold was then immersed in PBS for reinforcement treatment, and followed by a second lyophilization to prepare the reinforced keratin/HA scaffold. The morphology, mechanical, chemical, crystal and thermal property of the keratin/HA scaffold were investigated by SEM, FTIR, XRD, DSC, respectively. The results showed that the keratin/HA scaffold had a high porosity of 76.17 ± 3%. The maximum compressive strength and compressive modulus of the reinforced scaffold is 0.778 and 3.3 MPa respectively. Subcutaneous implantation studies in mice showed that in vivo the scaffold was biocompatible since the foreign body reaction seen around the implanted scaffold samples was moderate and became minimal upon increasing implantation time. These results demonstrate that the keratin/HA reinforced scaffold prepared here is promising for biomedical utilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。