In silico modeling of the molecular interactions of antacid medication with the endothelium: novel therapeutic implications in head and neck carcinomas

抗酸药物与内皮细胞分子相互作用的计算机模拟:头颈癌的新治疗意义

阅读:4
作者:M Matossian, C Vangelderen, P Papagerakis, L Zheng, G T Wolf, S Papagerakis

Abstract

Pathological acid reflux is a common event in patients afflicted with head and neck squamous cell carcinomas (HNSCCs), known to play a role in HNSCC etiology and contribute to complications after surgery or during radiation and chemotherapy. Antacid medications are commonly prescribed in HNSCC patients as part of their cancer treatment, and consist of two classes: histamine 2 receptor antagonist class (H2RA, with cimetidine as its prototypical drug) and proton pump inhibitors class (PPI, with omeprazole as its prototypical drug). Clinical evidence revealed a significant survival benefit of antacid usage in a large cohort of HNSCC patients treated in our Otolaryngology Department, with a median follow-up of over 5 years. Therefore, we postulate that one mechanism by which antacid intake enhances patient survival could involve modulation of tumor cell adhesion to endothelium, critical in the initiation of the metastatic dissemination. This study investigates the potential physical interactions between cimetidine and omeprazole with the endothelial E-selection (E-sel) and its ligand sialyl Lewis X (sLe(x)) using a molecular visualization energy-based program (AutoDock). Docking results were further analyzed with the PyMOL program, which allowed for measurements of the distances between the drugs and the closest interacting atoms or residues on E-sel and sLe(x) molecules. Our model predicts that omeprazole displays a stronger interaction with E-sel than cimetidine, as extrapolated from the calculated overall binding energies. However, the shorter distances existing between interacting atoms in the proposed E-sel/cimetidine complex are suggestive of more stable interactions. Neither antacid/E-sel complex overcame the stronger Autodock-calculated sLe(x)/E-sel interaction, suggesting competitive inhibition was not involved. This study provides the first in silico evidence of omeprazole and cimetidine ability to bind to adhesion molecules involved in tumor dissemination, underlining their therapeutic potential in the HNSCC clinical management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。