Ethanol and Cannabinoids Regulate Zebrafish GABAergic Neuron Development and Behavior in a Sonic Hedgehog and Fibroblast Growth Factor-Dependent Mechanism

乙醇和大麻素通过音猬因子和成纤维细胞生长因子依赖机制调节斑马鱼 GABA 能神经元的发育和行为

阅读:4
作者:Oswald Boa-Amponsem, Chengjin Zhang, Derek Burton, Kevin P Williams, Gregory J Cole

Background

Ethanol (EtOH) has diverse effects on nervous system development, which includes development and survival of GABAergic neurons in a sonic hedgehog (Shh) and fibroblast growth factor (Fgf)-dependent mechanism. Cannabinoids also function as inhibitors of Shh signaling, raising the possibility that EtOH and cannabinoids may interact to broadly disrupt neuronal function during brain development.

Conclusions

These studies provide evidence that forebrain GABAergic neuron development and zebrafish risk-taking behavior are sensitive to both EtOH and cannabinoid exposure in a Shh- and Fgf-dependent mechanism, and provide additional evidence that a signaling pathway involving Shh and Fgf crosstalk is a critical target of EtOH and cannabinoids in FASD.

Methods

Zebrafish embryos were exposed to a range of EtOH and/or cannabinoid receptor 1 (CB1R) agonist concentrations at specific developmental stages, in the absence or presence of morpholino oligonucleotides that disrupt shh expression. In situ hybridization was employed to analyze glutamic acid decarboxylase (gad1) gene expression as a marker of GABAergic neuron differentiation, and zebrafish behavior was analyzed using the novel tank diving test as a measure of risk-taking behavior.

Results

Combined acute subthreshold EtOH and CB1R agonist exposure results in a marked reduction in gad1 mRNA expression in zebrafish forebrain. Consistent with the EtOH and cannabinoid effects on Shh signaling, fgf8 mRNA overexpression rescues the EtOH- and cannabinoid-induced decrease in gad1 gene expression and also prevents the changes in behavior induced by EtOH and cannabinoids. Conclusions: These studies provide evidence that forebrain GABAergic neuron development and zebrafish risk-taking behavior are sensitive to both EtOH and cannabinoid exposure in a Shh- and Fgf-dependent mechanism, and provide additional evidence that a signaling pathway involving Shh and Fgf crosstalk is a critical target of EtOH and cannabinoids in FASD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。