A mammalian reporter system for fast and quantitative detection of intracellular A-to-I RNA editing levels

用于快速定量检测细胞内 A-to-I RNA 编辑水平的哺乳动物报告系统

阅读:8
作者:Willemijn M Gommans, Jill McCane, Gregory S Nacarelli, Stefan Maas

Abstract

An important molecular mechanism to create protein diversity from a limited set of genes is A-to-I RNA editing. RNA editing converts single adenosines into inosines in pre-mRNA. These single base conversions can have a wide variety of consequences. Editing can lead to codon changes and, consequently, altered protein function. Moreover, editing can alter splice sites and influences miRNA biogenesis and target recognition. The two enzymes responsible for editing in mammals are adenosine deaminase acting on RNA (ADAR) 1 and 2. However, it is currently largely unknown how the activity of these enzymes is regulated in vivo. Editing activity does not always correlate with ADAR expression levels, suggesting posttranscriptional or posttranslational mechanisms for controlling activity. To investigate how editing is regulated in mammalian cells, we have developed a straightforward quantitative reporter system to detect editing levels. By employing luciferase activity as a readout, we could easily detect different levels of editing in a cellular context. In addition, increased levels of ADAR2 correlated with increased levels of luciferase activity. This reporter system therefore sets the stage for the effective screening of cDNA libraries or small molecules for strong modulators of intracellular editing to ultimately elucidate how A-to-I editing is regulated in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。