Surface Modification of Nanopores in an Anodic Aluminum Oxide Membrane through Dopamine-Assisted Codeposition with a Zwitterionic Polymer

通过多巴胺辅助两性离子聚合物共沉积对阳极氧化铝膜纳米孔进行表面改性

阅读:13
作者:Chien-Wei Chu, Chia-Hsuan Tsai

Abstract

Surface modification through dopamine-assisted codeposition with functional zwitterionic polymers can provide a simple and one-step functionalization under ambient conditions with robust and stable dopamine-surface interactions to improve the hydrophilicity of nanoporous membranes, thereby expanding their applicability to nanofiltration, ion transport, and blood purification. However, a significant knowledge gap remains in our comprehension of the mechanisms underlying the formation and deposition of dopamine/polymer aggregated coatings within nanoscale confinement. This study explores a feasible method for membrane modification through the codeposition of dopamine hydrochloride (DA) and poly(sulfobetaine methacrylate) (PSBMA) on nanopores of anodic aluminum oxide (AAO) membranes. Our findings demonstrate that the aggregated coatings of DA and PSBMA nanocomposites can effectively deposit on the surfaces within cylindrical AAO nanopores, significantly enhancing the hydrophilicity of the nanoporous membranes. The morphology and homogeneity of the nanocomposite coatings within the nanopores are further investigated by varying PSBMA molecular weights and AAO pore sizes, revealing that higher molecular weights result in more uniform deposition. This work sheds light on understanding the codeposition of DA and zwitterionic polymers in nanoscale environments, highlighting a straightforward and stable surface modification process of nanoporous membranes involving functional polymers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。