Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells

羟基柠檬酸通过改变软骨细胞中的代谢级联来重建受损的关节软骨

阅读:17
作者:Yoshiyuki Mizushina, Liping Sun, Megumi Nishio, Sanae Nagata, Takeshi Kamakura, Masayuki Fukuda, Kousuke Tanaka, Junya Toguchida, Yonghui Jin

Conclusions

HCA demonstrates promise as an osteoarthritis therapy by enhancing chondrogenic differentiation. Its ability to modulate crucial metabolic pathways and facilitate cartilage repair suggests potential for clinical translation, addressing a critical need in the treatment of osteoarthritis.

Objective

Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo. Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells. The mechanisms of action underlying the identified compound were explored in vitro, and its therapeutic effects were validated in vivo using a mouse model of exercise-induced osteoarthritis.

Results

Hydroxycitric acid (HCA) emerged as the lead compound. In vitro, HCA effectively enhanced chondrogenesis by inhibiting ATP citrate lyase, inducing citrate and alpha-ketoglutarate (α-KG), while reducing cytosolic acetyl coenzyme A (Ac-CoA). This induction of α-KG promoted collagen prolyl-4-hydroxylase activity, boosting hydroxyproline production and matrix formation. The reduction of Ac-CoA attenuated the inhibitory effect of β-catenin on mitochondrial activity by diminishing its acetylation. In vivo, orally administered HCA accumulated in joint tissues of mice and histological examination demonstrated newly synthesized cartilage tissues in damaged area. Analysis of joint tissue extracts revealed a downregulation of Ac-CoA and an upregulation of citrate and α-KG, accompanied by a systemic increase in an anabolic biomarker. Conclusions: HCA demonstrates promise as an osteoarthritis therapy by enhancing chondrogenic differentiation. Its ability to modulate crucial metabolic pathways and facilitate cartilage repair suggests potential for clinical translation, addressing a critical need in the treatment of osteoarthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。