Diabetic Mice Spleen Vulnerability Contributes to Decreased Persistence of Antibody Production after SARS-CoV-2 Vaccine

糖尿病小鼠脾脏脆弱性导致 SARS-CoV-2 疫苗接种后抗体产生持久性降低

阅读:8
作者:Yara Atef, Tomoya Ito, Akitsu Masuda, Yuri Kato, Akiyuki Nishimura, Yasunari Kanda, Jun Kunisawa, Takahiro Kusakabe, Motohiro Nishida

Abstract

During the COVID-19 pandemic, diabetic and obese patients experienced higher rates of hospital admissions, severe illness, and mortality. However, vaccinations failed to provide those vulnerable populations the same level of protection against COVID-19 severity as those without diabetic and obese phenotypes. Our study aimed to investigate how diabetes mellitus (DM) impacts the immune response following vaccination including the artificially designed trimeric SARS-CoV-2 spike (S)-protein. By using two diabetic mouse models, ob/ob mice (obese, hyperglycemic, and insulin-resistant) and STZ-treated mice (insulin-deficient and hyperglycemic), we observed a significant reduction in S-protein-specific IgG antibody titer post-vaccination in both diabetic models compared to wild-type (WT) mice. Both diabetic mouse models exhibited significant abnormalities in spleen tissue, including marked reductions in splenic weight and the size of the white pulp regions. Furthermore, the splenic T-cell and B-cell zones were notably diminished, suggesting an underlying immune dysfunction that could contribute to impaired antibody production. Notably, vaccination with the S-protein, when paired with an optimal adjuvant, did not exacerbate diabetic cardiomyopathy, blood glucose levels, or liver function, providing reassurance about the vaccine's safety. These findings offer valuable insights into potential mechanisms responsible for the decreased persistence of antibody production in diabetic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。